martes, 31 de mayo de 2011

4.2 4.2 Serie numérica y convergencia Prueba de










































BIBLIOGRAFIAS:

webs.uvigo.es/matematicas/campus_ourense/...BB/.../guion3.pdf



4.1 DEFINICION DE SERIES


4.1 Definición de seria. 4.1.1 Finita. 4.1.2 Infinita.

Una serie es la suma de los términos de una sucesión. Se representa una serie con términos an como  
donde n es el índice final de la
serie. Las series infinitas son aquellas donde i toma el valor de absolutamente todos los números naturales, es decir,      i = 1,2,3,\ldots.
Las series convergen o divergen. En cálculo, una   serie diverge si    no existe o si tiende a infinito; puede converger si 

Serie finita

xi = 0 para todo i > n y yi = 0 para todo i > m. En este caso el producto de
Cauchy de   
Por lo tanto, para series finitas (que son sumas finitas), la multiplicación de Cauchy es directamente la multiplicación de las series.

Serie infinita


§  Primer ejemplo. Para alguna      


                 por definición y la fórmula binomial. Dado que, formalmente    se ha demostrado que   

Como el límite del producto de Cauchy de dos series absolutamente convergentes es igual al producto de los límites de esas series (véase debajo), se ha demostrado por lo tanto la fórmula exp(a + b) = exp(a)exp(b) para todo   
Segundo ejemplo. Sea x(n) = 1 para todo, por lo tanto el producto de Cauchy

Evaluacion Parcial

Por medio de la presente informo que el equipo ha obtenido en los 5 subtemas el 94%

Atentamente
Ing. Enrique Márquez.

jueves, 26 de mayo de 2011

4.3 SERIESDE POTENCIA

Series de potencias
Series De Potencia Series de potencias Convergencia de las series de potencias Definición Recibe el nombre de serie de potencias toda serie de la forma ∞Σ n=0 an(x−c)n. El número real an se denomina coeficiente n-ésimo de la serie de potencias (obsérvese que el término n-ésimo de la serie es an(x−c)n). Si los coeficientes a0, a1, am−1 son nulos, la serie suele escribirse ∞Σ n=m an(x−c)n. En cierto modo, se trata de una especie de polinomio con infinitos términos. Vamos a ver que las funciones definidas como suma de una serie de potencias comparten muchas propiedades con los polinomios. ¿Para qué valores de x converge una serie de potencias? Obviamente, es segura la convergencia para x =c, con suma a0, y puede suceder que éste sea el único punto en el que la serie converge.

Una serie del tipo:
+ + + +K+ n +K
n a a x a x a x3 a x
3
2
0 1 2
ordenada por potencias enteras crecientes de la variable x y con coeficientes , , , , , . 0 1 2 K n K a a a a
constantes, independientes de x , recibe el nombre de serie de potencias.
A menudo consideramos la serie de potencias en una forma más general:
+ ( )+ ( ) + ( ) +K+ ( )n +K
n a a x a a x a a x a 3 a x a
3
2
0 1 2
donde a es otra constante. De hecho, por el Mathboch de “Aplicaciones de las derivadas” sabemos
que este tipo de series reciben el nombre de series de MacLaurin y de Taylor, respectivamente. Una
serie de Taylor puede ser reducida a una de MacLaurin mediante el siguiente cambio de variable:
x a = x'
En lo que concierne a la convergencia de series, trataremos sólo las series de MacLaurin puesto que
las de Taylor se reducen a las primeras mediante un simple cambio de variable.
http://www.mitecnologico.com/Main/SeriesDePotencia
Proyecto e-Math 13
Financiado por la Secretaría de Estado de Educación y Universidades (MECD)

4.4 RADIO DE CONVERGENCIA

 

Definición

Para una serie de energía f definido como:
donde
a es una constante, el centro del disco de la convergencia,
cn es nth complejo coeficiente, y
z es una variable.
El radio de convergencia r es un número verdadero no negativo o , tales que converge la serie si
y diverge si
Es decir la serie converge si z está bastante cercano al centro y diverge si es demasiado lejano. El radio de convergencia especifica cómo está cercano está bastante cercano. El radio de convergencia es infinito si la serie converge para todos números complejos z.

Encontrar el radio de convergencia

El radio de convergencia puede ser encontrado aplicándose prueba de la raíz a los términos de la serie. La prueba de la raíz utiliza el número
donde ƒn es ntérmino del th cn(z − a)n (el “sup del lim” denota superior del límite). La prueba de la raíz indica que converge la serie si |C| < 1 y diverge si |C| > 1. Sigue que converge la serie de energía si la distancia de z al centro a es menos que
y diverge si la distancia excede ese número. Observe eso r = 1/0 se interpreta como radio infinito, significando que el ƒ es función entera.
El límite implicado en prueba del cociente es generalmente más fácil de computar, pero el límite puede no poder existir, en este caso se utiliza la prueba de la raíz. La prueba del cociente utiliza el límite
En el caso de una serie de energía, esto se puede utilizar para encontrar eso

4.5 SERIE DE TAYLOR

¿Qué es?
La serie de Taylor es una serie funcional y surge de una ecuación en la cual se puede encontrar una solución aproximada a una función.

¿Para que sirve?
La serie de Taylor proporciona una buena forma de aproximar el valor de una función en un punto en términos del valor de la función y sus derivadas en otro punto.

Por supuesto, para hacer esta aproximación sólo se pueden tomar unas cuantas expresiones de esta serie, por lo que el resto resulta en un error conocido como el término residual, es a criterio del que aplica la serie en numero de términos que ha de incluir la aproximación.

Pueden resolver por aproximación funciones trigonométricas, exponenciales, logarítmicas etc...

¿Cómo funciona?
La serie de Taylor se basa en ir haciendo operaciones según una ecuación general y mientras mas operaciones tenga la serie mas exacto será el resultado que se esta buscando. Dicha ecuación es la siguiente:


Existen series de Taylor para:
  • Función exponencial
  • Logaritmo natural

Serie Geométrica

Teorema del binomio

Funciones trigonométricas:
  • Seno
  • Coseno
  • Tangente
  • Secante
  • Arco seno
  • Arco tangente

Funciones hiperbólicas:
  • Senh
  • Cosh
  • Tanh
  • Senh-1
  • Tanh-1
Archivo:TaylorCosCos.png Archivo:TaylorCosAll.png

miércoles, 25 de mayo de 2011

4.6 REPRESENTACION DE FUNCIONE MEDIANTE LA SERIE DE TAYLOR

En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:

Aquí, n! es el factorial de n y f (n)(a) indica la n-ésima derivada de f en el punto a.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.
La serie de Taylor de una función f de números reales o complejos que es infinitamente diferenciable en un entorno de números reales o complejos a, es la serie de potencias:

 http://es.wikipedia.org/wiki/Serie_de_Taylor

jueves, 19 de mayo de 2011

4.7 Cálculo de Integrales de funciones

Fórmula de Taylor
Sea f(x) una función definida en un intervalo que contiene al punto a, con derivada de todos los órdenes.

El polinomio de primer grado p1(x) = f(a) + f ' (a) (x-a) tiene el mismo valor que f(x) en el punto x=a y también, como se comprueba fácilmente, la misma derivada que f(x) en este punto. Su gráfica es una recta tangente a la gráfica de f(x) en el punto a.
Es posible elegir un polinomio de segundo grado, p2(x) = f(a) + f ' (a) (x-a) + ½ f ' ' (a) (x-a)2, tal que en el punto x=a tenga el mismo valor que f(x) y valores también iguales para su primera y segunda derivadas. Su gráfica en el punto a se acercará a la de f(x) más que la anterior. Es natural esperar que si construimos un polinomio que en x=a tenga las mismas n primeras derivadas que f(x) en el mismo punto, este polinomio se aproximará más a f(x) en los puntos x próximos a a. Así obtenemos la siguiente igualdad aproximada, que es la fórmula de Taylor:
f(x) ≈ f(a) + f '(a) (x-a) + (1/2!) f ' '(a) (x-a)2 + ...... + (1/n!) f (n)(a) (x-a) n
El segundo miembro de esta fórmula es un polinomio de grado n en (x-a). Para cada valor de x puede calcularse el valor de este polinomio si se conocen los valores de f(a) y de sus n primeras derivadas.
Para funciones que tienen derivada (n+1)-ésima, el segundo miembro de esta fórmula, como se demuestra fácilmente, difiere del primero en una pequeña cantidad que tiende a cero más rápidamente que (x-a)n. Además, es el único polinomio de grado n que difiere de f(x), para x próximo a a, en un valor que tiende a cero (cuando x tiende a a) más rápidamente que (x-a)n.
Si f(x) es un polinomio algebraico de grado n, entonces la igualdad aproximada anterior es una verdadera igualdad.
Para que sea exacta la igualdad aproximada anterior, debemos añadir al segundo miembro un término más, llamado resto:
f(x) = f(a)+f '(a)(x-a)+(1/2!) f ' '(a)(x-a)2+ ...... +(1/n!) f (n)(a)(x-a)n+(1/(n+1)!) f (n+1)(c)(x-a)n+1
Autor: Mariano Banzo Marraco.