martes, 28 de junio de 2011

3.1.1 Area bajo la grafica de una funcion

Área bajo la grafica de una función continua

De Wikillerato

Sea 
\mathrm{f}
una función continua en el intervalo   
\left(
</p>
<pre> \, a, \, b \,
</pre>
<p>\right)
,   tal que 
\mathrm{f}
toma solo valores NO negativos en dicho intervalo   ( 
\mathrm{f} \left( \, x \, \right) \ge 0, \, \forall x \in \left( \, a, \, b \, \right)
).

Nos planteamos el siguiente problema: ¿Como podemos calcular el area comprendida entre las rectas verticales de ecuaciones   
x = a
  y   
x = b
,   la grafica de la función 
\mathrm{f}
y el eje X? El área que queremos calcular corresponde a la superficie coloreada de azul en la figura de abajo:

Imagen:areaBajoGrafica.png

Este area es el valor de la integral entre 
a
y 
b
de 
\mathrm{f}
y la denotamos por:

\int_a^b \mathrm{f} \left( \, x \, \right) \cdot \mathrm{d}x
Esta integral se trata de una integral definida. Una integral definida es, por tanto, un número, mientras que una integral indefinida es una familia de funciones ( el conjunto de primitivas de la función que se integra ).

Veamos una manera de dar una solución aproximada al problema que nos planteabamos ( el calculo de dicha area ).

Dividimos el intervalo   
\left(
</p>
<pre> \, a, \, b \,
</pre>
<p>\right)
  en 
n 
intervalos de la misma longitud (   
\frac{b - a}{n}
  ). Los limites de estos intervalos mas pequeños son:

x_0 = a, \, x_1 = a + \frac{b - a}{n}, \, \ldots, \, x_n = b
donde  
x_i = a + \frac{b - a}{n} \cdot i
.

Para   
i = 1, \, 2, \, \ldots, \, n
  contruyamos el rectangulo cuya base es el intervalo   
\left( \, x_{i-1}, \, x_i \, \right)
  y cuya altura es de longitud   
\mathrm{f} \left( \, x_{i-1} \, \right)
.

Haciendo esto para   
i = 1, \, 2, \, \ldots, \, n
,   terminamos con 
n 
rectangulos. La suma de sus areas es una aproximación al area bajo la grafica de 
\mathrm{f}
que queremos calcular.

En general, cuanto mayor sea 
n
mejor aproximación sera la suma de las areas de los rectangulos a   
\int_a^b \mathrm{f} \left( \, x \, \right) \cdot \mathrm{d}x
.

Así, cuando  
n = 2
:

Imagen:areaRectangulos2.png

uno podria esperar que la aproximación obtenida sea peor que si se considera un número mayor de rectangulos, por ejemplo   
n = 4
:

Imagen:areaRectangulos4.png

Llamemos   
S_n
  a la suma de los rectangulos así construidos. Se tiene que:

S_n \longrightarrow \int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}

Es decir,   
S_n
  tiende a  
</p>
<pre>\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x 
</pre>
<p>   cuando el número de rectangulos, 
n 
, tiende a infinito.

En todo lo que hemos visto hasta ahora hemos supuesto que la función 
\mathrm{f}
toma valores NO negativos en el intervalo   
\left( \, a, \, b \, \right)
.   ¿Que pasaría si 
\mathrm{f}
tomase valores NO positivos en dicho intervalo? En este caso, ¿como podemos calcular el area comprendida entre las rectas verticales de ecuaciones   
x = a
  y   
x = b
,   la grafica de la función 
\mathrm{f}
y el eje X?

Imagen:areaSobreGrafica.png

Casi todo lo dicho con anterioridad para el caso   
\mathrm{f} \ge 0 
  seria aplicable al caso   
0 \ge \mathrm{f} 
  , pero ahora:

S_n \longrightarrow -\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}
y el area sobre la grafica de la función es

-\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}
siendo la integral definida   
\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}
  NO positiva porque   
0 \ge \mathrm{f} \left(  \, x \, \right), \, \forall x \in \left(  \, a, \, b \,
\right)

http://www.educared.org/wikiEducared/%C3%81rea_bajo_la_grafica_de_una_funci%C3%B3n_continua.html

No hay comentarios:

Publicar un comentario