martes, 28 de junio de 2011

3.1 AREAS

El área es una medida de la extensión de una superficie, expresada en unidades de medida denominadas superficiales. Para superficies planas el concepto es más intuitivo. Cualquier superficie plana de lados rectos puede triangularse y se puede calcular su área como suma de las áreas de dichos triángulos. Ocasionalmente se usa el término "área" como sinónimo de superficie, cuando no existe confusión entre el concepto geométrico en sí mismo (superficie) y la magnitud métrica asociada al concepto geométrico (área).
Sin embargo, para calcular el área de superficies curvas se requiere introducir métodos de geometría diferencial.
Para poder definir el área de una superficie en general –que es un concepto métrico–, se tiene que haber definido un tensor métrico sobre la superficie en cuestión: cuando la superficie está dentro de un espacio euclídeo, la superficie hereda una estructura métrica natural inducida por la métrica euclídea

Historia
La idea de que el área es la medida que proporciona el tamaño de la región encerrada en una figura geométrica proviene de la antigüedad. En el Antiguo Egipto, tras la crecida anual de río Nilo inundando los campos, surge necesidad de calcular el área de cada parcela agrícola para restablecer sus límites; para solventar eso, los egipcios inventaron la geometría, según Heródoto.[1]
El modo de calcular el área de un polígono como la suma de las áreas de los triángulos, es un método que fue propuesto por primera vez por el sabio griego Antifón hacia el año 430 a. C. Hallar el área de una figura curva entraña más dificultad. El método de agotamiento consiste en inscribir y cincunscribir polígonos en la figura geométrica, aumentar el número de lados de dichos polígonos y hallar el área buscada. Con este sistema, que se conoce como método de exhausción de Eudoxo, consiguió hallar la fórmula para calcular el área de un círculo. Dicho sistema fue empleado tiempo después por Arquímedes para resolver otros problemas similares,[2] así como el cálculo aproximado del número π

Área de superficies curvas
El área de una superficie curva es más complejo y en general supone realizar algún tipo de idealización o límite para medirlo.
  • Cuando la superficie es desarrollable, como sucede con el área lateral de un cilindro o de un cono el área de la superficie puede calcularse a partir del área desarrollada que siempre es una figura plana. Una condición matemática necesaria para que una superficie sea desarrollable es que su curvatura gaussiana sea nula.
  • Cuando la superficie no es desarrollable, el cálculo de la superficie o la fórmula analítica para encontrar dicho valor es más trabajoso. Un ejemplo de superficie no desarrollable es la esfera ya que su curvatura gaussiana coincide con el inverso de su radio al cuadrado, y por tanto no es cero. Sin embargo la esfera es una superficie de revolución
Superficie de revolución
Cuando una superficie curva puede ser generada haciendo girar un curva plana o generatriz alrededor de un eje directriz, la superficie resultante se llama superficie de revolución y su área puede ser calculada fácilmente a partir de la longitud de la curva generatriz que al girar conforma la superficie. Si y=f(x) es la ecuación que define un tramo de curva, al girar esta curva alrededor del eje X se genera una superficie de revolución cuya área lateral vale

Cálculo general de áreas
Mediante la geometría diferencial de superficies o más generalmente la geometría riemanniana puede calcularse el área de cualquier superficie curva finita. Si la superficie viene dada por la función explícita z = f(x, y) entonces, dada una región Ω contenida en una superficie su área resultar ser:


De manera un poco más general si conocemos la ecuación paramétrica de la superficie en función de dos coordenadas cualesquiera u y v entonces el área anterior puede escribirse como:



3.1.1 Area bajo la grafica de una funcion

Área bajo la grafica de una función continua

De Wikillerato

Sea 
\mathrm{f}
una función continua en el intervalo   
\left(
</p>
<pre> \, a, \, b \,
</pre>
<p>\right)
,   tal que 
\mathrm{f}
toma solo valores NO negativos en dicho intervalo   ( 
\mathrm{f} \left( \, x \, \right) \ge 0, \, \forall x \in \left( \, a, \, b \, \right)
).

Nos planteamos el siguiente problema: ¿Como podemos calcular el area comprendida entre las rectas verticales de ecuaciones   
x = a
  y   
x = b
,   la grafica de la función 
\mathrm{f}
y el eje X? El área que queremos calcular corresponde a la superficie coloreada de azul en la figura de abajo:

Imagen:areaBajoGrafica.png

Este area es el valor de la integral entre 
a
y 
b
de 
\mathrm{f}
y la denotamos por:

\int_a^b \mathrm{f} \left( \, x \, \right) \cdot \mathrm{d}x
Esta integral se trata de una integral definida. Una integral definida es, por tanto, un número, mientras que una integral indefinida es una familia de funciones ( el conjunto de primitivas de la función que se integra ).

Veamos una manera de dar una solución aproximada al problema que nos planteabamos ( el calculo de dicha area ).

Dividimos el intervalo   
\left(
</p>
<pre> \, a, \, b \,
</pre>
<p>\right)
  en 
n 
intervalos de la misma longitud (   
\frac{b - a}{n}
  ). Los limites de estos intervalos mas pequeños son:

x_0 = a, \, x_1 = a + \frac{b - a}{n}, \, \ldots, \, x_n = b
donde  
x_i = a + \frac{b - a}{n} \cdot i
.

Para   
i = 1, \, 2, \, \ldots, \, n
  contruyamos el rectangulo cuya base es el intervalo   
\left( \, x_{i-1}, \, x_i \, \right)
  y cuya altura es de longitud   
\mathrm{f} \left( \, x_{i-1} \, \right)
.

Haciendo esto para   
i = 1, \, 2, \, \ldots, \, n
,   terminamos con 
n 
rectangulos. La suma de sus areas es una aproximación al area bajo la grafica de 
\mathrm{f}
que queremos calcular.

En general, cuanto mayor sea 
n
mejor aproximación sera la suma de las areas de los rectangulos a   
\int_a^b \mathrm{f} \left( \, x \, \right) \cdot \mathrm{d}x
.

Así, cuando  
n = 2
:

Imagen:areaRectangulos2.png

uno podria esperar que la aproximación obtenida sea peor que si se considera un número mayor de rectangulos, por ejemplo   
n = 4
:

Imagen:areaRectangulos4.png

Llamemos   
S_n
  a la suma de los rectangulos así construidos. Se tiene que:

S_n \longrightarrow \int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}

Es decir,   
S_n
  tiende a  
</p>
<pre>\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x 
</pre>
<p>   cuando el número de rectangulos, 
n 
, tiende a infinito.

En todo lo que hemos visto hasta ahora hemos supuesto que la función 
\mathrm{f}
toma valores NO negativos en el intervalo   
\left( \, a, \, b \, \right)
.   ¿Que pasaría si 
\mathrm{f}
tomase valores NO positivos en dicho intervalo? En este caso, ¿como podemos calcular el area comprendida entre las rectas verticales de ecuaciones   
x = a
  y   
x = b
,   la grafica de la función 
\mathrm{f}
y el eje X?

Imagen:areaSobreGrafica.png

Casi todo lo dicho con anterioridad para el caso   
\mathrm{f} \ge 0 
  seria aplicable al caso   
0 \ge \mathrm{f} 
  , pero ahora:

S_n \longrightarrow -\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}
y el area sobre la grafica de la función es

-\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}
siendo la integral definida   
\int_a^b \mathrm{f }\left( \, x \, \right) \cdot \mathrm{d}x}
  NO positiva porque   
0 \ge \mathrm{f} \left(  \, x \, \right), \, \forall x \in \left(  \, a, \, b \,
\right)

http://www.educared.org/wikiEducared/%C3%81rea_bajo_la_grafica_de_una_funci%C3%B3n_continua.html